Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tidal disruption events (TDEs) are an important way to probe the properties of stellar populations surrounding supermassive black holes. The observed spectra of several TDEs, such as ASASSN-14li, show high nitrogen-to-carbon (N/C) abundance ratios, leading to questions about their progenitors. Disrupting an intermediate- or high-mass star that has undergone CNO processing, increasing the nitrogen in its core, could lead to an enhanced nitrogen TDE. Galactic nuclei present a conducive environment for high-velocity stellar collisions that can lead to high mass loss, stripping the carbon- and hydrogen-rich envelopes of the stars and leaving behind the enhanced nitrogen cores. TDEs of these stripped stars may therefore exhibit even more extreme nitrogen enhancement. Using the smoothed particle hydrodynamics codeStarSmasher, we provide a parameter space study of high-velocity stellar collisions involving intermediate-mass stars, analyzing the composition of the collision products. We conclude that high-velocity stellar collisions can form products that have abundance ratios similar to those observed in the motivating TDEs. Furthermore, we show that stars which have not experienced high CNO processing can yield low-mass collision products that retain even higher N/C abundance ratios. We analytically estimate the mass fallback for a typical TDE of several collision products to demonstrate consistency between our models and TDE observations. Lastly, we discuss how the extended collision products, with high central to average density ratios, can be related to repeated partial TDEs like ASASSN-14ko and G objects in the Galactic center.more » « lessFree, publicly-accessible full text available February 6, 2026
-
Abstract Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star.more » « less
-
Abstract The formation histories of compact binary mergers, especially stellar-mass binary black hole mergers, have recently come under increased scrutiny and revision. We revisit the question of the dominant formation channel and efficiency of forming binary neutron star (BNS) mergers. We use the stellar and binary evolution codeMESAand implement a detailed method for common envelope and mass transfer. We perform simulations for donor masses between 7 M⊙and 20 M⊙with a neutron star (NS) companion of 1.4 M⊙and 2.0 M⊙ at two metallicities, using varying common envelope efficiencies and two different prescriptions to determine if the donor undergoes core collapse or electron capture, given their helium and carbon–oxygen cores. In contrast to the case of binary black hole mergers, for an NS companion of 1.4 M⊙, all BNS mergers are formed following a common envelope phase. For an NS mass of 2.0 M⊙, we identify a small subset of mergers following only stable mass transfer if the NS receives a natal kick sampled from a Maxwellian distribution with velocity dispersionσ= 265 km s−1. Regardless of the supernova prescription, we find more BNS mergers at subsolar metallicity compared to solar.more » « less
-
Abstract Gravitational-wave observations of binary black hole (BBH) systems point to black hole spin magnitudes being relatively low. These measurements appear in tension with high spin measurements for high-mass X-ray binaries (HMXBs). We use grids of MESA simulations combined with the rapid population-synthesis code COSMIC to examine the origin of these two binary populations. It has been suggested that Case-A mass transfer while both stars are on the main sequence can form high-spin BHs in HMXBs. Assuming this formation channel, we show that depending on the critical mass ratios for the stability of mass transfer, 48%–100% of these Case-A HMXBs merge during the common-envelope phase and up to 42% result in binaries too wide to merge within a Hubble time. Both MESA and COSMIC show that high-spin HMXBs formed through Case-A mass transfer can only form merging BBHs within a small parameter space where mass transfer can lead to enough orbital shrinkage to merge within a Hubble time. We find that only up to 11% of these Case-A HMXBs result in BBH mergers, and at most 20% of BBH mergers came from Case-A HMXBs. Therefore, it is not surprising that these two spin distributions are observed to be different.more » « less
An official website of the United States government
